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Abstract. The one-dimensional steady-state heat and mass transfer in a two-phase zone of a water-saturated
porous medium is studied. The system consists of a sand-water-vapour mixture in a tube that is heated from
above and cooled from below. Under certain conditions, a two-phase zone of both vapour and water exists in
the middle of the tube. A model problem for the temperature and the liquid saturation profiles within this two-
phase zone is formulated by allowing for an explicit temperature dependence for the saturation vapour pressure
together with an explicit saturation dependence for the capillary pressure. A boundary-layer analysis is performed
on this model in the asymptotic limit of a large vapour-pressure gradient. This asymptotic limit is similar to the
large-activation-energy limit commonly used in combustion problems. In this limit, and in the outer region away
from any boundary layers, it is shown that the temperature profile is slowly varying and that the corresponding
saturation profile agrees very well with that obtained in the previous model of Udell [J. Heat Transfer 105 (1983)
p. 485] where strict isothermal conditions were assumed. The condensation and evaporation occurring within the
boundary layers near the edges of the two-phase zone is examined. Finally, an iterative method is described that
allows the temperature profile in the two-phase zone to be coupled to the temperature profiles in the two single-
phase zones consisting of either water or vapour. This allows for the computation of the locations of the edges of
the two-phase zone within the tube. Numerical computations are performed with realistic values of the parameters.
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1. Introduction

An understanding of heat transfer and fluid flow through porous media is central for analyzing
many environmental and technological applications. Soil is one of many geological materials
that is both porous and permeable for the liquids and gases with which it naturally interacts.
Waste disposal often requires fluid transport through a porous structure, as does oil recovery,
where thermal effects are also significant. The design of porous insulation clearly raises issues
of heat transfer and the migration of moisture. The modelling of these and other such processes
must take into account the geometry of the porous solid, which impedes the flow of the fluid
through the medium.

The problem of modelling heat and mass transfer of a single-phase fluid flowing through a
porous medium is somewhat challenging. A significantly more complicated modeling problem
concerns the motion of a fluid through a porous structure that undergoes a phase change.
An example of such a problem includes the drying of wood (cf. Whitaker [1]). Fluid phase
change in porous media is also at the centre of many technological problems. In configurations
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involving condensation and evaporation, regions of single-phase fluid and two-phase fluid
often coexist within the porous medium.

One technological advance inspired by environmental concerns is the development of the
proton-exchange-membrane (PEM) fuel cell. In recent years, as automotive manufacturers
have recognized the need for a low-emission alternative to the internal combustion engine, the
design of fuel cells has attracted much interest. This technological advance has required an
understanding of the behavior of mathematical models for the condensation of water vapour
inside a porous electrode. Bradean et al. [2] identifies regions of water-vapour oversaturation
within a fuel-cell electrode, where condensation is likely to occur. Phase-change effects are
not considered in his model. In this paper, we present a one-dimensional, steady-state model
of heat and mass transfer in a porous layer, including phase-change effects. Our aim is to form
an understanding of this phase-change problem by developing solution techniques that may,
hopefully, be extended subsequently to a two-dimensional model of a porous electrode.

A one-dimensional study by Udell [3] investigates the effects on a porous layer, which
contains water, of heating the layer at the top and cooling the layer from below. Experimental
results indicate that, at steady state, there are three distinct zones within the porous pack:
a vapour zone at the top, a liquid zone at the bottom, and a two-phase zone in between.
In the two-phase zone there is a counterflow of liquid, driven upwards by capillary forces,
and vapour, driven downwards by a pressure gradient. Udell presents a model of the two-
phase zone that assumes a constant temperature throughout this zone, with condensation and
evaporation occurring at the lower and upper boundaries, respectively. The model problem
is solved to give a saturation profile, which indicates the length of the two phase zone. A
similar study is performed by Torrance [4], with heating from the bottom, and similar results
are obtained.

In this paper, we present an extension to existing models of the two-phase zone. By adding
an energy equation to the system considered by Udell [3], and assuming an explicit temper-
ature dependence for the vapour pressure, we are able to solve not only for the saturation,
but also for the temperature. In identifying a boundary layer near the lower boundary of the
two-phase zone, we are able to show that Udell’s formulation is an approximation to the full
problem in the large vapour-pressure-gradient limit. Further, the inclusion of temperature in
our model allows us to compute the position of the two-phase zone, as well as the length
of it. By coupling the boundary conditions for the two-phase zone to the simple saturation
and temperature profiles in the two single-phase zones, we formulate a problem based on the
continuity of temperature throughout all three zones, and obtain continuous saturation and
temperature over the entire domain.

The outline of this paper is as follows. In Section 2 we formulate a system of differen-
tial equations for the saturation and the temperature profiles within the two-phase zone. In
Section 3 we introduce a non-dimensionalization of this system. In doing so, we identify a
large parameter based on a large vapour-pressure gradient, and we construct an approximate
boundary-layer solution to this system. The analysis is similar in spirit to the well-known
large-activation-energy limit in combustion theory (cf. [5, pp. 76–84], [6]). In Section 4 we
compare the asymptotic theory with numerical solutions to the full coupled problem within
the two-phase zone. Finally, in Section 5 we formulate an iterative algorithm to couple the
temperature profiles within the vapour-only and water-only one-phase zones at the top and
bottom of the porous pack, respectively, to the temperature profile in the middle two-phase
zone. Numerical realizations of this algorithm are presented. Finally, some conclusions are
made in Section 6.
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Figure 1. The three distinct zones. Figure 2. The exponential fit of the saturation pressure with
the data of [9].

2. Modelling the two-phase zone

Here we develop a one-dimensional model for steady-state heat and mass transfer within the
two-phase zone of a porous layer, heated from the top, cooled from the bottom, and containing
a specified mass of water. The configuration is shown in Figure 1.

Suppose that the heat flux through the porous pack maintains three distinct zones as shown
in Figure 1. At the top, there is a zone containing only water vapour. In this top zone, phase
change does not occur, and heat transfer is through conduction only. Similarly, at the bottom,
there is a conductive zone of only liquid water. In between, there is a zone where both liquid
and vapour occur. In this middle zone, the liquid is driven upwards through the pores of the
porous medium by capillary forces, and the vapour flows countercurrent to the liquid, driven
by a pressure gradient. Phase change in our model is assumed to be possible anywhere in this
two-phase zone. One of our aims is to find the length, L, of this zone. We model the heat and
mass transfer with phase-change effects, following the approaches as described in Bridge [12,
Chapter 2] and Whitaker [1].

At steady-state, mass conservation may be written as

d

dz
(ρlul + ρvuv) = 0 , (2.1)

where u is velocity, ρ is density, and the subscripts l and v refer to the liquid and vapour
phases, respectively. Since the fluid in each of the two conductive zones must be stationary,
there must be zero mass flux across the boundaries of the two-phase zone. Hence, Equa-
tion (2.1) can be integrated to give the overall mass balance

ρlul + ρvuv = 0 . (2.2)
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The local rate of condensation, �, is defined by

−� = d

dz
(ρvuv) . (2.3)

Darcy’s law gives relations between the velocity and the pressure gradient for each of the two
phases as follows (cf. [3]):

ul = −κκrl

µl

(
dpl

dz
+ ρlg

)
, (2.4)

uv = −κκrv

µv

(
dpv

dz
+ ρvg

)
. (2.5)

Here, κ is the permeability of the porous material, κr denotes the relative permeability of a
particular phase, µ is the dynamic viscosity, p is the pressure, and g is the acceleration due to
gravity.

The energy equation describing the heat transfer and phase change in the two-phase zone
is

(ρlclul + ρvcvuv)
dT

dz
= d

dz

(
K̂

dT

dz

)
+ hvap� . (2.6)

Here, c denotes the specific heat capacity of a particular phase, hvap is the specific latent heat
of water, K̂ is the thermal conductivity and T is the temperature, which is the same for both
phases at any given z. Substituting for ul and uv in (2.1), and using (2.4) and (2.5), we obtain

d

dz

[
ρl

µl

κrl

(
dpl

dz
+ ρlg

)
+ ρv

µv

κrv

(
dpv

dz
+ ρvg

)]
= 0 . (2.7)

The mass balance (2.2) gives the liquid velocity in terms of the vapour velocity, and hence we
may write the energy equation (2.6) as

(cv − cl)ρvuv

dT

dz
= d

dz

(
K̂

dT

dz

)
+ hvap� .

Using (2.3) and (2.5) to write � and uv in terms of the vapour pressure, pv, we can write the
equation above as

κρv(cl − cv)κrv

µv

(
dpv

dz
+ ρvg

)
dT

dz
= d

dz

[
K̂

dT

dz
+ κρvhvap

µv

κrv

(
dpv

dz
+ ρvg

)]
. (2.8)

Equations (2.8) and (2.7) form a coupled system of two equations for the variables pl ,
pv, κrl , κrv and T . We now make use of some empirical and analytical results to reduce the
number of variables in this system.

Firstly, from Baggio et al. [8], the vapour pressure in a porous medium may be written as

pv = psat exp

[−pcM

ρlRT

]
, (2.9)

where psat is the saturation vapour pressure, M the molar mass of water, and R the universal
gas constant. From the data given in [8], the exponent in (2.9) has a typical magnitude 10−5,
and we shall hence take pv = psat in the analysis that follows. The saturation vapour pressure,
psat, does depend on temperature. The relationship is tabulated in [9]. This data suggests an
exponential-type relationship of the form
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pv = psat = aebT ,

for some constants a and b. Fitting the data in [9] to this curve for temperatures close to 370 K,
which are relevant to our model, we obtain the dimensional quantities

a = 0·19743 Pa and b = 0·03525 K−1 . (2.10)

In Figure 2 we compare our exponential fit of the data with the data of [9].
Secondly, the capillary pressure, pc, is defined as the difference between the vapour and

liquid pressures,

pc = pv − pl . (2.11)

As shown by Leverett [10], the capillary pressure is found to be a function of the liquid volume
fraction, called the saturation s. The functional form for the capillary pressure, pc = pc(s) is
known as the Leverett function. Udell [3] correlates this Leverett function to write the capillary
pressure as

pc = δJ (s) = δ
[
1·417(1 − s) − 2·120(1 − s)2 + 1·263(1 − s)3] . (2.12)

Here,

δ = σ
( ε

κ

) 1
2

,

where σ is the vapour-liquid interfacial tension, and ε is the porosity of the porous medium.
Finally, the relative permeabilities are functions of the saturation. The relative permeabil-

ities account for the decrease in mobility of one phase due to the presence of another. Thus,
we expect κrl to be zero when only liquid is present, and unity for only vapour. Similarly, κrv

should be zero when s = 1 and unity when s = 0. We will use the cubic forms suggested by
Udell [3] to represent the results reported by Fatt and Klickoff [11].

In summary, we have the following empirical relationships:

κrl = s3 , (2.13)

κrv = (1 − s)3 , (2.14)

pv = aebT , (2.15)

pl = aebT − δJ (s) . (2.16)

Substituting (2.13)–(2.16) in Equations (2.7) and (2.8), we obtain two coupled equations for
s and T

d

dz

[
ρl

µl

s3

(
d

dz
[aebT − δJ (s)] + ρlg

)
+ ρv

µv

(1 − s)3

(
d

dz
[aebT ] + ρvg

)]
= 0 , (2.17)

and

κρv(cl − cv)

µv

(1 − s)3

(
d

dz
[aebT ] + ρvg

)
dT

dz

= d

dz

[
K̂

dT

dz
+ κρvhvap

µv

(1 − s)3

(
d

dz
[aebT ] + ρvg

)]
.

(2.18)
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2.1. BOUNDARY CONDITIONS

The system (2.17), (2.18) is second order in both s and T , and thus requires four boundary
conditions. At the top of the two-phase zone, representing the boundary with the vapour-only
zone, the saturation is zero. The heat flux across the boundary, q, which we will initially
specify, accounts for the temperature gradient and the evaporation of the upwards flowing
liquid water at the boundary. Thus, the two conditions at the upper boundary are

K̂
dT

dz
= q − hvapρlul , s = 0 , at z = L . (2.19)

Since we are considering a one-dimensional problem with no radial heat losses, the heat flux
across the lower boundary must also be q. Here, the associated phase change is condensation
of the downward flowing vapour, and the saturation is unity. Thus, the conditions at the lower
boundary are

K̂
dT

dz
= q + hvapρvuv, s = 1 , at z = 0 . (2.20)

The coupled system for s = s(z) and T = T (z) is given by the second-order Equations (2.17)
and (2.18), subject to the boundary conditions (2.19) and (2.20). In this system the length L

of the two-phase zone is unknown. Thus, we must specify the temperature at one of the edges
of the two-phase zone. This is done below following (3.5).

2.2. NONDIMENSIONALIZATION

We now nondimensionalize the system using the following scalings:

z = δ

ρlg
z∗ , L = δ

ρlg
L∗ , pc = δp∗

c with δ = σ
( ε

κ

) 1
2

,

T = TrefT
∗, K̂ = K̂lK̂

∗, q = κhvapρvρlg

µl

q∗ .

Here ∗ denotes a dimensionless quantity. In terms of these variables, (2.17) becomes

d

dz∗

[
s3

(
d

dz∗
[a

δ
ebTrefT

∗ − J (s)
]

+ 1

)
+ αβ(1 − s)3

(
d

dz∗
[a

δ
ebTrefT

∗] + α

)]
= 0 . (2.21)

Similarly, (2.18) transforms to

κρv(cl − cv)

µv

(1 − s)3

(
a

δ

d

dz∗
[
ebTrefT

∗] + α

)
Tref

dT ∗

dz∗

= d

dz∗

[
K̂lK̂

∗ Tref

δ

dT ∗

dz∗ + κρvhvap

µv

(1 − s)3

(
a

δ

d

dz∗
[
ebTrefT

∗] + α

)]
.

(2.22)

Here we have defined α = ρv/ρl and β = µl/µv . The Rayleigh number Ra for this problem
is given by

Ra = κρv(cl − cv)δ

µlK̂l

. (2.23)
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In Table 1 we list typical values for dimensional and dimensionless quantities of interest
using the data given in Udell [3] and Bridge [12, Chapter 2]. This allows us to identify the
orders of magnitude associated with certain parameters in our model.

From the data given in Table 1, we see that Ra = O(10−1), while terms on the right-
hand side of Equation (2.22) are on the order of 102. Thus, the two-phase zone corresponds
to a small Rayleigh number problem. That is, diffusive effects are dominant over convective
effects. Thus, we neglect the left-hand side of the energy Equation (2.22). The right-hand side
of (2.22) can then be integrated, giving

K̂lK̂
∗ Tref

δ

dT ∗

dz∗ + κρvhvap

µv

(1 − s)3

(
a

δ

d

dz∗
[
ebTrefT

∗] + α

)
= C , (2.24)

where C is a constant to be determined. For the subsequent analysis, we choose Tref = 380 K,
to ensure that T ∗ ≈ 1.

3. Asymptotic analysis

We now formulate our problem as concisely as possible. Multiplying the energy equation (2.24)
by δ/K̂lTref, we obtain

K̂∗ dT ∗

dz∗ + η(1 − s)3

(
a

δ

d

dz∗
[
ebTrefT

∗] + α

)
= Ĉ , (3.1)

where η is defined by

η = κρvhvapδ

µvK̂lTref

.

Again, the constant Ĉ is to be determined. We notice that (3.1) is simply a nondimensional
version of

K̂
dT

dz
+ hvapρvuv = constant. (3.2)

The boundary condition (2.20) shows that the constant in (3.2) is the heat flux, q. In view
of the overall mass balance, we note that the condition (2.19) is then automatically satisfied
by (3.2). Thus, upon neglecting the convective term in the energy equation that is proportional
to the Rayleigh number, a heat flux boundary condition at the bottom of the two-phase zone is
automatically satisfied once the heat flux boundary condition at the top of the two-phase zone
is satisfied. In addition, the constant Ĉ in (3.1) is a scaled heat flux defined by

Ĉ = δ

K̂lTrefρlg
q . (3.3)

The problem now is reduced to solving the first order system

s3

(
d

dz∗
[a

δ
ebTrefT

∗ − J (s)
]

+ 1

)
+ αβ(1 − s)3

(
d

dz∗
[a

δ
ebTrefT

∗] + α

)
= 0, (3.4)

K̂∗ dT ∗

dz∗ + η(1 − s)3

(
a

δ

d

dz∗
[
ebTrefT

∗] + α

)
= Ĉ , (3.5)
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Table 1. List of parameters and variables used.

Symbol Interpretation Typical value Units (SI )

Dimensional parameters

κ permeability 6·4 × 10−12 m2

ρv vapor density 1 kg/m3

ρ
 liquid density 103 kg/m3

cv specific heat of vapor 103 J/kg K

c
 specific heat of liquid water 4·1 − 4·3 × 103 J/kg K

µv viscosity of water vapour 2·2 × 10−5 kg/m s

µ
 viscosity of liquid water 2·5 × 10−4 kg/m s

K̂v thermal conductivity of vapor saturated porous medium 1·0 W/m K

K̂l thermal conductivity of liquid saturated porous medium 2·5 W/m K

q heat flux 103 W/m2

hvap latent heat (water liquid-vapor) 2·5 × 106 J/kg

σ surface tension (water liquid-vapor) 72·4 × 10−3 kg/s

R universal gas constant 8·31 J/mole K

M molar mass of water 18 × 10−3 kg/mole

g acceleration due to gravity 9·8 m/s2

a characteristic vapour pressure - see (2.10) 0·19743 Pa

b characteristic temperature scaling - see (2.10) 0·03525 K−1

H total height of porous pack 0·254 m

Tref reference temperature 380 K

Dimensional variables

T temperature 360 − 390 K

pv vapor pressure 0·7 − 1·4 × 105 Pa

pc capillary pressure 0 − 1 × 104 Pa

Non-dimensional parameters

ε porosity 0·38 —

α density ratio (ρv/ρ
) 10−3 —

β viscosity ratio (µ
/µv) 11 —

φ see (3.6) 13·4 —

η see (3.1) 13·5 —

ξ see (3.9) 13·5 —

D total height of porous pack 0·14 —

Non-dimensional variables

s liquid volume fraction 0 − 1 —

T temperature 0·95 − 1·05 —

pv vapor pressure 3·98 − 8·13 —

pc capillary pressure 0 − 0·6 —

Sources: Bradean [12], Udell [3].
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subject to the conditions s(0) = 1, s(L∗) = 0 for the unknown nondimensional two-phase
zone length L∗, with T ∗ specified at one of the boundaries. We need to specify this extra
condition on T ∗ since the trivially satisfied heat flux condition leaves us with insufficient data
to solve the system. In practice, in Section 5 we will later determine T ∗ at the boundaries
of the two-phase zone in terms of the temperatures at the bottom and top of the entire porous
pack. This will be done by coupling the temperature profiles in all three distinct zones together
such that the temperature is continuous throughout the entire porous pack.

The analysis of the system is assisted by the identification of the large parameter φ defined
by

φ = bTref . (3.6)

We use the value of b from (2.10) and the value Tref = 380 K to calculate that φ ≈ 13·4.
Since our choice of Tref ensures that T ∗ = O(1), we have that ebTrefT

∗ = eφT ∗
is large. This

implies that we have an exponentially large vapour pressure, and an exponentially large vapour
pressure gradient throughout the two-phase zone.

Exponential nonlinearities that can range over many orders of magnitude are common
in combustion problems where reactions are controlled by Arrhenius reaction rates that de-
pend exponentially on the temperature. An asymptotic method to treat these problems was
introduced in [5, pp. 76–84]. This method is now commonly referred to as high-activation-
energy asymptotics (cf., [7, Chapter 2]). High-activation-energy asymptotics is in fact one
of a variety of asymptotic methods used to treat problems where either exponentially large
or exponentially small effects need to be resolved. Here, for our condensation problem, we
use a similar approach to the large-activation-energy asymptotic method used by Kapila and
Matkowsky [6]. Factorizing the exponential term in (3.5) as eφeφ(T ∗−1), we can write the
system (3.4) and (3.5) as

s3

(
ξ

d

dz∗
[
eφ(T ∗−1)

]
− d

dz∗ J (s) + 1

)
+ αβ(1 − s)3

(
ξ

d

dz∗
[
eφ(T ∗−1)

]
+ α

)
= 0, (3.7)

K̂∗︸︷︷︸
∼1

dT ∗

dz∗ + η(1 − s)3


ξ

d

dz∗
[
eφ(T ∗−1)

]
︸ ︷︷ ︸

O(1)

+α


 = Ĉ, (3.8)

where

ξ = a

δ
eφ. (3.9)

We refer to (3.7) and (3.8) as the full problem. In the discussion below we drop the ∗ in this
system.

The data in Table 1 gives ξ ≈ 7·3, η ≈ 13·5, and K̂ = O(1). Since φ ≈ 13·4, we will
solve this system in the following asymptotic limit:

ξ = O(1) and η = O(φ) . (3.10)

Before analyzing the asymptotic structure of (3.7) and (3.8), we determine the asymptotic
behavior of the saturation s and the temperature T near the boundaries of the two-phase zone.
Using the method of dominant balance, we readily obtain near the top boundary at z = L that
(see [12, Chapter 3])
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s ∼ B(L − z)1/4 , z → L , (3.11)

and

T ∼ Ttop − E(L − z) , z → L , (3.12)

where the constants B and E are given by

E = Ĉ − ηα

K̂ + ηξφeφ(Ttop−1)
, (3.13)

and

B =
(

−4αβ(Ĉ − K̂E)

J ′(0)η

)1/4

. (3.14)

Here Ttop is the value of T at z = L. From (3.11) it follows that s′(z) is singular at z = L.
This singularity has the potential for being troublesome when computing numerical solutions.
In Section 4 we discuss a regularized model amenable to finite difference computations.

Now, denoting the temperature at the lower boundary of the two-phase zone by Tbot, a
dominant balance analysis yields the asymptotic forms

s ∼ 1 − Fz , z → 0 , (3.15)

and

T ∼ Tbot + Gz , z → 0 . (3.16)

Here, the constants F and G are given by

G = Ĉ

K̂
, (3.17)

and

F = −1 − ξφeφ(Tbot−1)G

J ′(1)
. (3.18)

A higher order expansion proceeds in powers of z and shows that s and T are analytic near
z = 0.

3.1. BOUNDARY-LAYER PROBLEM NEAR z = 0

We write (3.8), where φ ≈ 13·4 is a large parameter, as

K̂︸︷︷︸
∼1

dT ∗

dz∗︸ ︷︷ ︸
term 1

+ η(1 − s)3


ξ

d

dz

[
eφ(T −1)

]︸ ︷︷ ︸
O(1)

+α




︸ ︷︷ ︸
term 2

= Ĉ. (3.19)

In (3.19) term 1 is small compared with term 2, provided that

ηξφ(1 − s)3 � K̂,
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which implies,

1 − s �
(

K̂

(ηξφ)

)1/3

. (3.20)

Since ξ = O(1) and η = O(φ), we can write (3.20) as

1 − s � φ−2/3 . (3.21)

The inequality (3.21) holds unless s ∼ 1 − s1φ
−2/3, where s1 ∼ O(1). Thus, since s(0) = 1,

term 1 in Equation (3.19) is negligible except in a thin layer near z = 0. The width of this
boundary layer then clearly tends to zero in the limit φ → ∞.

In the outer region, away from the lower boundary at z = 0, term 1 in (3.19) is negligible,
and thus

ξ
d

dz

[
eφ(T −1)

] = Ĉ

η(1 − s)3
− α . (3.22)

The neglect of the small term uncouples the system (3.7) and (3.8). Substituting (3.22) in
(3.7), and rearranging, we obtain

s′
outer(z) =

(1 − α) + Ĉ
η

[
1

(1−s)3 + αβ

s3

]
J ′(s)

. (3.23)

The solution to this outer problem for the saturation has a singularity at s = 0, in common with
the full problem. However, it also has a singularity at s = 1. A dominant balance argument
gives

s ∼ 1 − B1z
1/4 as z → 0 , (3.24)

s ∼ B2(L − z)1/4 as z → L , (3.25)

where

B1 = 4

√
−4Ĉ

ηJ ′(1)
, (3.26)

and

B2 = 4

√
−4αβĈ

ηJ ′(0)
. (3.27)

The saturation in the outer region will be found from the numerical solution of (3.23) subject
to the outer boundary condition s(L) = 0. The outer temperature, which follows from (3.22),
is given by

Touter(z) = 1 + 1

φ
log

[
1

ξ

∫ z

L

(
Ĉ

η(1 − s(t))3
− α

)
dt + eφ(Ttop−1)

]
, (3.28)

where the temperature at the upper boundary, Ttop, must be specified.
We now compare our outer problem with the formulation of Udell [3]. The saturation

profile from Udell [3] reduces to solving the first-order equation
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s′(z) =
(1 − α) + Ĉ

η

[
1

(1−s)3 + αβ

s3

]
(1 − α)J ′(s)

, (3.29)

subject to s(0) = 1. Since α = 0·001 we have almost perfect agreement with our outer
problem (3.23). Therefore, Udell’s problem corresponds to our outer solution, and so is not
expected to be valid near the lower boundary.

We now consider the physical meaning of the outer solution. In neglecting term 1 in (3.19),
we force, in dimensional variables, that ρvuvhvap is a constant. Thus, from (2.3) we get

d

dz

[
ρvuvhvap

] = 0 , ⇒ � = 0 .

This implies that the condensation rate is zero everywhere inside the outer region, and thus
phase change can only occur at the boundaries. So Udell’s model clearly describes an evap-
oration front at the upper boundary and a condensation front at the lower boundary. Our
boundary-layer formulation similarly suggests that evaporation takes place in a front at the
upper boundary, with no phase change in the outer region, and that condensation may occur
in a layer near the lower boundary. Further insight is gained by writing (3.19) in the form

dT

dz︸︷︷︸
term 1

+O(φ) (1 − s)3

(
dp̂v

dz
+ α̂

)
︸ ︷︷ ︸

term 2

= Ĉ. (3.30)

We see that an O(1) variation in vapour pressure corresponds to an O(1/φ) variation in tem-
perature. The popular isothermal assumption used in the literature (e.g. [3], [4]) suggests that
diffusive effects are negligible throughout the entire two-phase zone. However, we see that
this is only true in the limit φ → ∞, and we have identified a layer near the lower boundary
where diffusion must be considered.

Near the lower boundary, the saturation can be approximated by s ∼ 1 when φ � 1. Thus,
inside this layer, (3.7) reduces to

ξ
d

dz

[
eφ(T −1)

] − d

dz
J (s) + 1 = 0 . (3.31)

The boundary-layer problem for the inner solution is thus given by (3.31) together with (3.19),
where term 1 is now retained. The system is then easily decoupled to give

K̂

φ

(
J ′(s) ds

dz
− 1

Â + J (s) − z

)
+ η(1 − s)3

(
J ′(s)

ds

dz
− 1 + α

)
= Ĉ , (3.32)

and

T = 1 + 1

φ
log

[
Â + J (s) − z

ξ

]
, (3.33)

where the constant Â is given by

Â = ξeφ(Tbot−1) , (3.34)

and Tbot is specified.
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4. Numerical solutions

The full coupled problem (3.7) and (3.8) is now solved subject to the condition s = 1, T = Tbot

at z = 0. The temperature Tbot, and the heat flux q must be specified, and the length L of
the two-phase zone is then found from the upper boundary condition s(L) = 0. We employ a
4th/5th order Runge-Kutta scheme, and implement the upper boundary condition as s(L) = ε,
where ε 	 1.

The error made in computing the length L by using this regularized boundary condition
is O(ε4) as suggested by (3.25). This error is plotted numerically in [12, Chapter 4]. This
shows that computing the outer problem with the boundary conditions s = ε and s = 1 − ε

at the ends of the two-phase zone gives high accuracy and involves only nonsingular, well
behaved equations that are amenable to computation. Solutions with Tbot = 1 for various
values of the heat flux are shown in Figure 3. As remarked in Section 3 following (3.29),
our saturation profile closely approximates Udell’s saturation profile over most of the domain,
except in a small region near the lower boundary at z = 0. Our computed temperature profiles
shown in Figure 3 indicate that the isothermal assumption used by Udell is a good approx-
imation, but is not strictly valid. In particular, there is a sharp increase in the temperature
gradient near the lower boundary. However, the change in temperature over the two-phase
zone is small, on the order of 0.1%. Thus, in the absence of rather accurate measurements
along the entire porous pack, the two-phase zone in Udell’s experiment would clearly appear
approximately isothermal.

Udell [3] reports that the length of the two-phase zone increases with decreasing heat flux.
This qualitative feature is also captured by our model. In particular, our computations show
that the two-phase zone length increases from L ≈ 0·06 when q = 3200 to L ≈ 0·14
when q = 800. In Figure 4 we plot the length L as a function of q. This curve enables us
to predict the minimum value of the heat flux that is sufficient to support three distict zones
for a given overall length of the porous pack. In particular, for Udell’s porous pack, which
has a nondimensional length of 0·1411, we see that a heat flux of less than a critical value of
approximately 600 Wm−2 gives L > 0·1411, and thus will not support the three distinct zones
in a pack of this size together with the given temperature Tbot = 1.

To find the inner solution, we solve numerically the initial-value problem for the saturation
given by Equations (3.34) and (3.32) with the initial conditions s(0) = 1, and Tbot specified.
This is done using a 4th/5th order Runge-Kutta method. The temperature T (z) is then trivially
computed using the algebraic equation (3.33). The outer solution is similarly obtained by
solving the saturation problem (3.23) subject to s(0) = 1 and s(L) = 0, and then applying
a numerical quadrature method to compute the temperature given by (3.28). We choose a
midpoint method to deal with the improper integral in (3.28) as s → 1. Notice that the length L

is unknown in the outer formulation, and for comparison with the full solution, we simply set
L to be that which is found from the full solution, and then compute the outer solution.

In Figure 5, we plot the full solution together with the inner and outer solutions for both
saturation and temperature. The outer problem is clearly a good approximation to the full
problem, except for inside the thin boundary layer at the lower boundary.

In the previous section, we showed that the width of the boundary layer tends to zero in
the limit φ → ∞, and thus the outer solution tends to the full solution. In Figure 6, we plot
saturation profiles for φ = 5, 10, 13·4 and 50, computed with q = 1000 and Tbot = 1. We
see that the outer solution quickly converges to the full solution as φ becomes large. Notice
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Figure 3. Numerical solutions to the full problem with different heat flux.

Figure 4. Length of the two-phase zone as a function of the applied heat flux.

that the saturation profile for our computed value φ = 13·4 is in close agreement with the
profile for φ = 50.

We have also shown that as φ → ∞, the temperature in the two-phase zone becomes
approximately isothermal. In Figure 7, we plot the temperature profiles obtained as φ increases
through large values. Our computations clearly show the convergence to an approximately
isothermal two-phase zone.
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Figure 5. Full and boundary layer solutions.

Figure 6. Full and outer saturation profiles as φ → ∞. Figure 7. Convergence to constant temperature.

5. Coupling to the single-phase zones

Reports on the one-dimensional study of fluid phase change in a heated porous pack have
noted the existence of distinct zones containing liquid only, vapour only and both phases.
Typically, a model problem is described in the two-phase zone, from which the length of that
zone may be found (see [3], [4]). However, the problem of finding the position of the two-
phase zone in a three-zone porous pack has so far not been considered. The heat transfer in
the two single-phase zones is by conduction only. Thus, the temperature in these zones is
harmonic, and has a linear profile. The problem of finding the length of a two-phase zone
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Figure 8. Porous layer and three distinct zones.

Figure 9. Profiles for entire pack, with variation in T0.

and its position between the two single-phase zones is formulated from the condition that the
temperature is continuous throughout the entire pack.

Consider the one-dimensional porous pack configuration shown in Figure 8. Experimen-
tally, the parameters which we are able to explicitly control are the temperatures applied to
the top and bottom of the entire pack. Thus, we consider our temperature control parameters
to be T1 and T0. Conceivably, we could formulate an inverse problem such that, given the
control parameters T1 and T0, we can compute the values of the heat flux, q, through the
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vapour-only zone, and the temperature Ttop at the top of the two-phase zone. Then the length,
(D − L − X), of the vapour zone would be easily computed, since the temperature profile
in that zone is linear. Since we would now have q and Ttop specified, we could compute
the values of L and Tbot using our solution technique from the previous section. This would
determine X is known. However, with Tbot, T0 and X known, and a linear temperature profile
in the conductive liquid-only zone, we can calculate the heat flux qbot through this bottom
zone. Since we are considering a one-dimensional problem, there is no radial heat loss from
the pack. Experimentally, this is achieved by insulating the walls of the container that holds
the porous medium. Thus the downward heat flux across the vapour zone must equal the
downward heat flux across the liquid zone, and so we have the requirement that

q = qbot. (5.1)

A further constraint must be incorporated into our model in order to meet this requirement, and
so we need a further control parameter for the inverse problem. This third control parameter
for the experiment is the total mass of water inside the porous pack. This parameter may
obviously be varied for different experiments. The mass in the two conductive zones is trivially
computed if their lengths are known, while the mass contained within the two-phase zone will
depend on the saturation profile. Suppose the entire pack contains a measured mass (per unit
cross sectional area) of water. Then this mass, W , must satisfy the integral constraint

Xρl +
∫ L

0
(sρl + (1 − s)ρv) dz + (D − L − X)ρv = W. (5.2)

We now pose an inverse problem which, given inputs T1, T0 and W , will return all the un-
knowns shown in Figure 8, and be consistent with the heat flux condition (5.1). In solving this
problem, we compute the saturation and temperature profiles within the two-phase zone, and
we present the problem for both the outer equations (3.23), (3.28) and the full equations (3.7),
(3.8). Further, given the inputs T1, T0 and W , the saturation and temperature profiles over the
entire porous pack may then be compared for the outer and full models.

For the outer formulation, we have the following equations, valid inside the two-phase
zone:

s′
outer(z) =

(1 − α) + Ĉ
η

[
1

(1−s)3 + αβ

s3

]
J ′(s)

, (5.3)

and

Touter(z) = 1 + 1

φ
log

[
1

ξ

∫ z

L

(
Ĉ

η(1 − s(t))3
− α

)
dt + eφ(Ttop−1)

]
, (5.4)

where

Ĉ = δ

K̂lTrefρlg
q. (5.5)

In order to compute for the temperature and the saturation over the entire domain, we iterate
according to Algorithm 1, described below.

Algorithm 1
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• Input T1, T0, W .
• Initialize q.
• Repeat

– Compute Ĉ as in (5.5).
– Solve (5.3) subject to s(0) = 1 and s(L) = 0. Hence obtain s(z), L.

– (5.2) gives X = W−(D−L)ρv−
∫ L

0 (sρl+(1−s)ρv) dz

ρl−ρv
.

– Ttop =
[
T1 − (D−L−X)∗lengthscale

K̂v
q
]
/Tref.

– Compute T (z) according to (5.4). Hence find the temperature Tbot.
– qbot = K̂l

Tbot∗Tref−T0
X∗lengthscale.

– f (q) = q − qbot. (Want f (q) = 0 for a solution).
– Adjust q if necessary by a Newton step.

• Until ‖f (q)‖ < tolq .
The stopping criterion for this iteration in Algorithm 1 is that ‖q−qbot‖ < tolq , where tolq

is a user specified tolerance on the heat flux. This criterion ensures that the requirement (5.1) is
met to within some tolerance, and setting tolq = 1 gives is sufficient to give a 0·1% difference
between q and qbot if q is on the order of 1000 Wm−2.

We implement Algorithm 1 numerically by defining the function f (q) and employing a
Newton method to find the roots of f . To solve the outer equations in the two-phase zone we
use the numerical techniques and regularization methods described in the previous chapter.
The integral in Equation (5.2) is computed using Simpson quadrature. Also, for the Newton
iterations, we use a centered difference approximation for the derivative f ′(q). It is worth
noting that for this outer formulation, we are able to find the two parameters q and Ttop by
implementing a single variable root finder. This is due to the fact that the outer problem for
s(z) and T (z) may be uncoupled. The inverse problem for the full model, which we will
describe in the next section, does not have this convenient property.

Our Newton method implementation of Algorithm 1 is seen to converge to within the
specified tolerance, usually in less than 10 iterations. We take our initial value of heat flux q

from the data from Udell’s experiments [3].
In Figure 9, we plot results for three runs of our code. In each run, we keep the top temper-

ature T1 and the water content W the same. The three distinct zones within the porous pack
are clear from both the saturation and temperature profiles. Also, we can see clearly that the
temperature variation over the two-phase zone is very small in comparison with the variations
over the two single-phase zones, as expected. By way of validation, as we lower the bottom
temperature T0, we note that the heat flux increases, as expected. With this increase in heat
flux, the decrease in the length of the two-phase zone is also apparent.

The results of a further test are shown in Figure 10. Here we hold the temperatures T1

and T0 constant. Then the effect of an increase in total water mass W is clearly evident, as the
length of the liquid-only zone is seen to increase. Finally, in Figure 11, we choose the three
control parameters in such a way that we can demonstrate the effects of large variations in
heat flux. Here, we see again the decrease in length of two-phase zone with increasing heat
flux, while the increase in liquid-zone length with increasing water mass is again clear.

The iterative inverse problem for the full formulation becomes more complicated, since the
full system (3.7), (3.8) cannot be uncoupled. Here, we will initialize the boundary conditions
at the lower boundary of the two-phase zone. Thus, we now consider the problem shown in
Figure 8, except with the flux in the liquid zone being equal to q. We then follow a similar



The analysis of a two-phase zone with condensation in a porous medium 265

Figure 10. Profiles for entire pack, with variation in W.

approach to Algorithm 1, and compute a new heat flux in the vapour-only zone, which we will
label qtop. We now have an inverse problem for the two parameters q and Tbot, which we will
solve using Algorithm 2.

Algorithm 2

• Input T1, T0, W .
• Initialize q, Tbot.
• Repeat

– Compute Ĉ as in (5.5).
– Solve the full coupled problem (3.7), (3.8).
– Hence obtain s(z), T (z), L and Ttop.

– (5.2) gives X = W−(D−L)ρv−
∫ L

0 (sρl+(1−s)ρv) dz

ρl−ρv
.

– T̂dim = q(X∗lengthscale)
K̂l

+ T0.

– T̂bot = T̂dim/Tref.

– qtop = k̂v(T1−Ttop∗Tref)

(D−L−X)∗lengthscale.

– g1(q, Tbot) = (q − qtop)/1000.

– g2(q, Tbot) = Tbot − T̂bot.

– G

(
q

Tbot

)
=

(
g1(q, Tbot)

g2(q, Tbot)

)
.

– Adjust q and Tbot if necessary.
• Until ‖G‖ < tol.
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Figure 11. Profiles for entire pack, large variation in heat flux.

Here, we define the function g1 so that it is of order one for the typical values of q under
consideration. The tolerance tol is a tolerance on the L2 norm of the error vector G. We
implement Algorithm 2 by again employing a Newton method. A good initial guess is required
for the Newton method implementation of Algorithm 2, and we take the values we obtain from
solving the outer inverse problem. For good initial values of q and Tbot, our code converges,
again usually in less than 10 iterations. Further, the heat flux q and the temperature Tbot

converge to values close to those obtained from the outer formulation.
In Figure 12, we present the saturation and temperature profiles over the entire pack for

both the outer and full models, given the same control parameters. The agreement is excellent.
The computed heat flux for the two different formulations agrees to within 2% in all cases we
have tried. The values of mean temperature across the two-phase zone for the full and outer
models agree to within 1% in all cases computed.

We remark that the simplified outer formulation derived from a boundary-layer argument
not only approximates the two-phase zone results for the full model with close agreement, but
also the results over the entire porous layer for the full model. Despite the extra singularity
which we introduce into the problem by accepting the outer model, we have a much simpler
problem to solve. The computational expense in solving the outer problem is less than that for
the full problem, in both the solution of the differential equations, and in the calculations for
the inverse problem.
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Figure 12. Profiles for entire pack, for outer and full formulations.

6. Conclusions

A new formulation for one-dimensional, steady-state heat and mass transfer in a porous
medium with phase change has been presented. We have extended the work of Udell [3] to
allow for variations in temperature throughout the two-phase zone of a three-zone system.

The analysis reveals a singularity in the saturation profile at the upper boundary of the two-
phase system, consistent with an evaporation front at this boundary. However, the saturation is
found to be analytic at the lower boundary, and so the condensation does not necessarily take
place at a front as previously assumed (cf. [3]), but rather we allow for phase-change within
the two-phase zone.

We have identified a boundary layer near the lower boundary of the two-phase zone, in
which phase change effects and heat diffusion are important, and an outer region, where
these effects are negligible. The outer equations are consistent with Udell’s model [3], and
approximate the full model in the limit of a large vapour-pressure gradient.

For realistic parameter values for the entire three-zone system, we have developed an
iterative method that finds both the length and the position of the two-phase zone under steady-
state conditions. This problem has not been considered previously. Heat transfer is considered
separately for the liquid, the two-phase, and the vapour zones, and then the solutions for
the three distinct zones are coupled together through the continuity of the temperature. The
iterative inverse problem has been solved for both the full and the outer formulations, and
close agreement has been obtained.

Since the outer model is identified as a good approximation of the full model for both the
two-phase zone calculations and those for the entire system, it is proposed that we accept the
outer model in preference to the full model, as it is seen to be significantly less expensive com-
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putationally. Further work should include an asymptotic analysis, with the aim of replacing
the full model with the outer model subject to an interface condition at the lower boundary.
Once this reduced system is derived, it should be possible to use standard computational cap-
turing techniques to compute the boundaries of two-phase zones in more physically realistic
two-dimensional models of a porous fuel cell electrode.
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